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Abstract. The models recently proposed for thiourea and betaine calciumchloride dihydrate,
which consider the symmetry break at the normal-incommensurate transition as the result
of the condensation of more than one symmetry-breaking normal mode, are discussed in the
framework of superspace symmetry and alterratively using the Landau theory. The power
andsimplicity of the superspace approach for describing the modulation are explicitly shown.
Asinmore conventional cases. the superspace symmetry introduces without further physical
arguments restrictions on the form of the incommensurate modulation equivalent to those
obtained through a Landau analysis where all possible secondary modes triggered at the
transition are calculated. including those induced by high-order coupling terms.

1. Introduction

Intheconventional Landautheory of a structural phase transition the symmetry breaking
at the transition is determined by the symmetry of the order parameter. This symmetry
is described by an irreducible representation of the space group of the high-symmetry
phase. If the order parameter is multidimensional, the actual symmetry of the low-
symmetry group also depends on the direction taken by the order parameter in the
representation space [1].

Thus, in the case of a second-order commensurate—commensurate transition, the
space group of the distorted structure is completely determined by the symmetry proper-
ties of the order parameter. All other modes or degrees of freedom which may be
triggered and become spontaneous at the transition (secondary modes) have a symmetry
higher than or equal to that of the order parameter. They cannot further lower the
symmetry of the system. Any additional symmetry break can only be associated with a
new phase transition. Also, any mode compatible with the space group of the distorted
phase can be considered asecondary mode and takes non-zero values after the transition.

In principle, it would be possible to describe the distorted phase in terms of the
superposition of the order parameter primary mode and the secondary modes, without
making use of its space group. An enumeration of the allowed secondary modes using
Landau theory would confirm that the number of parameters to be determined (complex
amplitudes of the different modes and their polarization vectors) coincides with that
necessary if the more usual and simple description is used in terms of atomic positions
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restricted by the space group. In this sense, the space group associated with the low-
symmetry phase and determined solely by the order parameter is an effective way of
enumerating all the degrees of freedom of the distorted structure.

The superspace group [2—4] describing the symmetry of an incommensurate (1)
phase plays an analogous role in the case of a commensurate-iC transition. Similarly to
the commensurate space groups, the superspace group of an IC phase is completely
determined by the symmetry of the order parameter [5, 6]. For order parameters cor-
responding to two-dimensional irreducible representations there is even a one-to-one
correspondence between the superspace group and the irreducible representation of the
order parameter [5.7]. This has led in some cases to the erroneous belief that the
superspace group of an IC phase is a concept totally equivalent to the irreducible
representation associated with the order parameter. Both concepts play different roles,
however. For instance, when the structure of the iC phase of K.SeQ, is restricted to
conform to the superspace group P(Pram):(—1ss), the modulation is automatically
forced to be the superposition of symmetry modes of wavevector g, = ng; (g, = (} — 8)a*
being the 1C modulation wavevector. n = 1, 2, . ..} with symmetries Z,, £,, £, and %,
forn=6m=l.n=bm=2.n=>6m+3andn=6m(m=0,1,2,...), respectively [8].
The modes are also constrained to satisfy specific phase relations between them. An
identical restriction on the secondary harmonics participating in the structural modu-
lation of K,5¢0, can be obtained from a Landau analysis of the transition, taking Z,(g,)
as the symmetry of the order parameter. Hence. the superspace group identifies not
only the symmetry of the primary distortion associated with the order parameter but
also those corresponding to all possible secondary modes and eventual additional restric-
tions on their superpasition.

Similarly. in the case of thiourea, the associated superspace group P(Pnma):s—11)
with g, = 8b" automatically implies that the first harmonic in the steuctural modulation
as well as all other odd harmonics in the modulation, have 7, symmetry, while even
harmonics correspond to the irreducible representation r|. In addition, the global phase
of the nth harmonic @, is restricted to satisfy &, = nd, (mod x), where @, is the free
phase of the first harmonic [9]. Again, these symmetry restrictions can also be obtained
from the Landau analysis of the transition from the Prma phase with a t,(g = 8b*) order
parameter [10].

The superspace symmetry associated with an 1€ structure is therefore fully equivalent
to a description of the 1 modulation in terms of modes triggered through their coupling
with the order parameter in a generalized Landau potential. The use of superspace
symmetry constitutes, however, a much simpler method as it automatically introduces,
without further physical arguments, the structural consequences of these restrictions,
as happens with space groups in the case of a commensurate structure,

The power of the superspace approach and the pariicular role played by the
superspace group concept becomes clearer when we consider unconventional i phases
(real or hypothetical) which have more than one order parameter, i.e. the symmetry
breaking is caused by two or more modes. In these cases, the superspace group of the 1€
structure is not directly related to a single irreducible representation and the advantages
of the superspace description tompared with a mode description become more signifi-
cant. We analyse here from this viewpoint two rather different models recently proposed
for thiourea and betaine calcium chloride dihydrate (Bccp).

In the case of thiourea, it has been suggested that the relative phase shift of the
second- and third-order harmonics with respect to the main distortion (order parameter)
may have general values not satisfying the constraint indicated above [10, 11]. Although
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this model is discarded by the experimental evidence and physical arguments [9, 12], it
is interesting to see its consequences in terms of superspace symmetry. In principle, it
implies a reduction in the crystal superspace group determined by the main distortion
to a smaller subgroup. The model requires, however, a smaller number of structural
parameters than those resulting from the associated superspace group [9]. Hence, a
description in terms of normal modes is apparently more effective than the superspace
description. Here we prove that in fact this is not the case and the stronger restrictions on
the i structure coming from the mode description disappear when additional secondary
modes are considered in the Landau analysis. Hence, the superspace group description
is also in this hypothetical case an effective and simple way to introduce all physically
acceptable restrictions on the IC modulation.

For BCCD, it was proposed [13, 14] that the IC primary modulation over the Pama
structure is the superposition of two modes of symmetries Ay and A, (for notation see
[15]). We shall show that the superspace group of such IC distortion is given by the
intersection of the superspace symmetries assoctated with each of the modes. For special
values of the phase shift between the two modes the resulting superspace group is
maximal. It can be shown that these special phase relations are energetically favourable
in a general Landau potential. As happens with more conventional models, the assigned
superspace group automatically introduces the same symmetry structural restrictions
which can be derived from a complex Landau analysis, where all coupled secondary
modes are considered.

2. Thiourea

The order parameter symmetry at the normal-IC phase transition in thiourea is 74 in the
notation of [8] (antisymmetric for o, and C,,). Consequently, the superspace group
associated with the 1¢ phase is P(Prma) : (s —11) [7]. The representative elements of the
superspace group P(Prma):(s—11) are in the usual notation [7, 9}

{E|000, 0}, {o, 435, —8/2 + 4}, {C,,|040, —6/2 + 4}, {0,[404, 0}
{1000, ®, /n}, {C,, |344, /2 + 3 + D, /m}
{0,100, =8/2 + 4 + &/}, {C,, 404, D, /1)

where @, is the global phase of the first harmonic, while the superlattice generators are
{E|100, 0}, {E|010, —&}, {E[001, 0}, {E|000, 1}.

Under thissuperspace symmetry, odd and even harmonics in the IC modulation with
wavevector g, = ng, are forced to have, respectively, 1, and 7, symmetries while their
phases &, are constrained by the relation ®, = nd| {mod ). Indeed, the modulated
structure has been successfully refined using this superspace group [9]. (7, is the fully
symmetric representation for the point group of the wavevector.)

The model in {10, 11] considers that this constraint between the global phases of the
first, second and third harmonics of the 1¢ modulation can be eventually broken, while
the harmonics maintain their symmetries 4. 7, and 74, respectively.
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The superspace group. under which an nth secondary mode with global phase ®,, (of
symmetry 7, for » odd and 7, for r even) is invariant. is given by the elements (see 5]
for a similar derivation)

{E|000, 0}, {0, [$44, —=&/2 + m/2}, {C,,|040, —8/2 + m/2}, {0,]304,0}
{1000, @, /na}, {Cy, |434, =6/2 + m/2 + ©, /nx},
{0,|040, —6/2 + m/2 + @, /nx}, {C,, |03, @, /nx}

where mis 0 and 1 for n even and odd, respectively, and the superlattice generators are
{E[100,0},{E|010, -5}, {E|001, 0}, {E|000, 1/a}.

It is easy to see now that, if the phase relationship ®, = a®, (mod ) is fulfilled, the
common superspace symmetry of the modulation, given by the intersection of all these
groups, coincides with the superspace group P(Pama): (s —11) associated with the pri-
mary distortion. If the phase relation is violated. the superspace symmetry is reduced to
alowersubgroup given by the elements of P(Prma): (s —1 1) not depending on the mode
phase. This superspace group is labelled as P(Pu2,a): (ss1). It should be stressed at this
point that this superspace group has been incorrectly labelled in previous literature
{9, 10].

Not only does the new symmetry introduce, as new degrees of freedom, the free
global phases of the different harmonics, but also the element {5,]030, —8/2 + 4 + @&,/
m}, which in the centrosymmetric group keeps the thiourea molecules invariant, is
absent in this subgroup. As a consequence. some restrictions on the form of the atomic
modulations disappear, and the harmonics are no longer forced to satisfy the r, and 1,
symmetries. In particular, the phases of the atomic modulations can take general values,
different for each atom in the asymmetrical unit [9].

Summarizing, a hypothetical model which only lifts the constraints between the
phases of the harmonics of the 1¢ modulation while keeping their symmetry reduces the
superspace symmetry to a non-centrosymmetric subgroup. However, the description of
the structure in terms of this new superspace group implies automatically the intro-
duction into the modulation of many additional degrees of freedom, so that its
description in terms of the superposition of odd 7, and even t, harmonics is no longer
valid. The question is then whether such a model with stronger restrictions on the
modulation than those coming from the corresponding superspace group is physicaily
acceptable.

We shall show imntediately by a simple Landau analysis that the answer is negative,
and the additional degrees of freedom associated to the lower superspace group are
physically relevant and are effectively triggered if the phase constraint is lifted,

Let us consider for instance a normal mode with ¢ = 2¢,. symmetry 7, and coordinate
Q3,.c,- Ingeneral, its lowest coupling with the order parameter Q, , is given by a term
in the Landau potential of the form

%V4(Q5',.OPQ§Q',.(| + CC) (l)
or in polar coordinates
VAPE)pqu,.rl COS(Zq)up - (D?.q,..rl) (2)

where (0o, Pop). (02,1, Pag,.r, ) are the amplitudes and phases of the order parameter
and the coupled mode. respectively.
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A term such as (2), linear in the coupling variable, is sufficient to make the cor-
responding mode 2g;, T, spontaneous at the transition, thus acting as a secondary mode
or secondary order parameter. In the case of a continuous transition, the cosine function
will also force the phase of the secondary mode to satisfy @,,, . = 2®,, (mod ).

The essential point not considered in previous work is that there exist in the structure
not only one but several normal modes of symmetry 2¢, 7, and all of them will be
coupled with the order parameter by terms of the type (2). with different coefficients
V.. Therefore, all of them will be spontaneous in the 1€ phase and the total second-order
harmonic with wavevector 2g, will be the result of their superposition. If the phase
constraint is satisfied by all the modes, their superposition, for which all the terms have
the same phase, will keep the symmetry 7,. In this case we can speak in practical terms
of a single secondary 2¢;, T, mode. On the other hand, the presence in the second
harmonic of a single mode 2¢g,, T, with a phase violating the phase constraint is enough
to break the global symmetry of the harmonic. As a result, the phases of the atomic
modulations will no longer be fixed by symmetry (as predicted by the superspace group
description) and will depend for each atom on the relative amplitudes and relative phases
of the superposing modes.

A similar mechanism also exists for the first harmonic. Modes with the same sym-
metry and same wavevector as the order parameter are coupled with the second-order
T, modes by terms of the type

pruppq,.r.;plq,.n COS(q)(,p + q)q,.r.; (I)‘q, rl} (3)

If a single mode 2g;, 7, does not fulfil the above-mentioned phase constraint, a term such
as (3) will induce the presence in the first harmonic of secondary 1,(g;) distortions with
no fixed phase relation with the 7. primary distortion. Consequently, the modulation
first harmonic will also lose its 7y symmetry.

It is also interesting to analyse the mechanism which reduces the symmetry of
the average structure to the non-centrosymmetric subgroup Pn2,a, as given by the
superspace group. Homogeneous (zero-wavevector) modes of B,, symmetry (anti-
symmetric for 1, C,,, C;, and g,) are coupled to the order parameter and other t,{g;)
modes by terms of the form

(1/2) VSPBn(qu’.opQ?,.T.a - CC) = Vgpﬁgupuppq;.r.; Sin(q)up - CDQ,:.T.:)' (4)

These terms, as those presented previously. are always present in a full Landau potential
of the transition. In a conventional Landau model the phase constraint at the free-energy
minimum resulting from terms such as (3) makes the sine function in (4) take a zero
value and the terms (4) become irrelevant. I'n the present hypothetical model. however,
the violation of the phase constraint makes the terms active, so that they will induce the
spontaneous condensation of the B,, modes, which break the centre of symmetry of the
average structure in the form expected from the superspace group description.

1t is important to note that the coupling terms (2), (3) and {4) considered above are
of relative low order in the order parameter (4, 6 and §, respectively). Therefore the
consequences of this (in particular those resulting from the first two coupling terms)
cannot be ignored in a realistic model.

3. Betaine calcinm chloride dihydrate

In this case, the basic structure of Pama symmetry is proposed to be modulated by the
action of two main modes with wavevector g, = d¢* and symmetries A; and A, [14]. The
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superspace symmetry corresponding te a mode A;(g;) (antisymmetric for o, and Cy,) is
P(Pama):(1s—1), while it is P{Prma):(ss—1) in the case of a mode A.(g,) (anti-
symmetric for g, and o,) [15]. The representative elements of the superspace group are
in the two cases as follows: for P{Prma):(1s—1)

{E|000, 0}, {o, 343, —6/2}, {0,040, 1}, {C,, 1404, —6/2 + £}
{1/000, W /x}, {Cy 1388, —8/2 + W/}, {C,,[040, } + W/}
{0,308, =6/2 + } + W/}

and, for P(Pnma):(ss—1)
{E|000, 0}, {0, |11}, —8/2 +1}, {0,]040, 1}, {C;, 404, —5/2}
{11000, ®/x}. {Cs, |34, —8/2 + § + /7, {C,, 1030, } + &/},
{0,304, =8/2 + ®/a}

where W and @ are the global phases of the modes A; and A,. respectively, while the
superlattice generators are

{E[100, 0}.{E|010, 0}, {E|001, —&}, {E|000, 1}.

Although. the 1C structure of BCCD has been determined successfully under the
superspace group P(Prma):(1s—1) [16], thus implying a single A; primary mode, it is
again interesting to analyse the implications of this alternative model in the frame of
superspace symmetry.

The superspace symmetry corresponding to the superposition of both modes is given
by the intersection between both superspace groups. It is easy to see that the resulting
group depends on the phase shift between both modes, so that

Y — & = arbitrary P(PIml) . {ls])
Y — ¢ =0 (mod 7) P(P12,/m1):(1-1/51) (5)
Y — & = 7/2 (mod 1) P(P2,ma):(—1s—1).

For any of these groups. the extinction rule in the diffraction diagram for diffraction
vectors of type (0, k. [, m), which exist for the intersecting superspace groups, disappear.

As in more conventional cases, it can be shown that the phase relations in (5)
corresponding to the maximal superspace symmetry are physically favoured. If we call
Q4. Q- )and (P, . P_, ) the complex coordinates corresponding to the modes A and
A3, their lowest-order coupling terms in a generalized Landau potential are

Q4 Qg Py Pg = pg\sp?\: (6)
and
Q%lP:_q' -+ QE_QFPE, = Zpizp,z\: cos[2(¥ — §)]. (7

The first term is isotropic, but the second favours configurations with ¥ — @ =0 or
7/2 (mod x) corresponding to the maximal superspace groups.

Another significant question is how the superspace group associated with the modu-
fation Ay + A, aliows an average structure of lower symmetry than Prima, if in fact the
average structure of both A, and A, modulations has Pama symmetry.
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Again in this case, the assigned superspace group is taking into account implicitly
and without using any physical argument the consequences of the triggering of additional
degrees of freedom through their coupling with the primary modes. For instance, if we
consider the symmetry properties of the modes it is easy to see that homogeneous modes
of symmetry By, (antisymmetric for C,,, C;;, 0, and g;) and B;, (antisymmetric for C,,,
C,,, I and o) will be coupled to the primary modes by terms of the type

szg(quP-rn + Q"q.‘Pq.') = 2szgpA3p-’\z COS([P - (1)) (8)
1085, (Qg,P-g; = @-g:Ps,) = 208,00, P 0, SI{(Y — ). 9

The B,, modes reduce the Pnma symmetry of the average structure to its subgroup
P12,/m]1,while modesof symmetry Bs, induce an average structure of P2 masymmetry.
Terms of the type (8) and (9) are responsible for the symmetry of the average structure,
as predicted by the assigned superspace groups. The minimization of the free energy
leads to the condensation of ane of these types of mode depending on the actual value
(0 or &/2) of the phase shift W — ®. If this latter takes a general value, both terms are
non-zero and both types of homogeneous mode become spontaneous, reducing the
symmetry of the average to P1ml, as expected from the superspace group assignment.

4. Conclusions

It has been shown using two hypothetical examples corresponding to 1C phases whose
symmetry cannot be described by a single order parameter that, even in these uncon-
ventional cases, the use of superspace symmetry in the structural description of the 1¢
phase introduces without requiring any physical reasoning the same restrictions on the
structural modulation as those derived by a complete Landau analysis, which has to
include all eventual spontaneous coupled modes. As both approaches are equivalent, it
may be a question of taste, background or personat preference to use one or the other.
However, a Landau description without a full consideration of ail possible coupled
modes, as often done, can lead to erroneous structural models, as has happened in the
literature for thiourea. In the superspace approach, the symmetry-breaking modes
determine the structure superspace group, and this latter aatomatically includes in a
standard crystaliographic form all physically meaningful restrictions on the structural
model.
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